Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on pinterest
Share on print
Share on email
NIAC 2019

NASA invests in Cutting Edge Concepts, such as Flexible Optical Telescopes and Soft-Robotic Astronaut Suits

While each of the projects below would deserve its own in-depth article, we desire to give a quick overview of the crop of new futuristic projects cooking at NASA in 2019.


NIAC, NASA’s Innovative Advanced Concepts, is a shining example of small investments helping to proof forward-looking concepts and giving individual or small teams of innovative thinkers the financial oxygen they deserve. For us, it has become a yearly habit to take the pulse of this exciting programme. This year NIAC has invested in 18 research projects and you can find links to them below.


A flexible optical telescope that can roll up into a tube (THE MOST)? Thermal mining of ice on celestial bodies? A soft-robotic spacesuit with self-healing skin (SmartSuit)? self-guided beam propulsion for deep space travel? Which engineer wouldn’t want to see these exciting ideas become reality, if only we could get an indication of their feasibility with some well-spent seed grants?

high angle view of a man
Why fold segmented telescopes when you can simply roll sheets?- Photo by Pixabay on


“Our NIAC program nurtures visionary ideas that could transform future NASA missions by investing in revolutionary technologies,” said Jim Reuter, acting associate administrator of NASA’s Space Technology Mission Directorate. “We look to America’s innovators to help us push the boundaries of space exploration with new technology.”


The latest NIAC selections include Phase I and Phase II awards. The selected Phase I studies cover a wide range of innovations. Each Phase I award is valued at approximately $125,000, helping researchers define and analyze their proposed concepts over nine months. If the initial feasibility studies are successful, awardees can apply for Phase II awards.


The new Phase I selections are:

  1. Power Beaming for Long Life Venus Surface Missions: New approach to support a Venus surface mission with power beaming
    Erik Brandon, NASA’s Jet Propulsion Laboratory (JPL), Pasadena, California
  2. Low-Cost SmallSats to Explore to Our Solar System’s Boundaries: A design for a low-cost, small satellite heliophysics mission to the outer solar system
    Robert Staehle, JPL
  3. Bioinspired Ray for Extreme Environments and Zonal Exploration (BREEZE): Combines inflatable structures with bio-inspired kinematics to explore and study the atmosphere of Venus
    Javid Bayandor, State University of New York, Buffalo
  4. SmartSuit: An intelligent spacesuit design with soft-robotics, self-healing skin and data collection for extravehicular activity in extreme environments that allows for greater mobility for exploration missions
    Ana Diaz Artiles, Texas A&M Engineering Experiment Station, College Station
  5. Dual Use Exoplanet Telescope (DUET): A novel telescope design to find and characterize planetary systems outside the solar system
    Tom Ditto, 3DeWitt LLC, Ancramdale, New York
  6. Micro-Probes Propelled and Powered by Planetary Atmospheric Electricity (MP4AE)Similar to the ballooning capabilities of spiders, these floating microprobes use electrostatic lift to study planetary atmospheres
    Yu Gu, West Virginia University, Morgantown
  7. Swarm-Probe Enabled ATEG Reactor (SPEAR) Probe: An ultra-lightweight nuclear electric propulsion probe for deep space exploration, designed to keep mass and volume low for commercial launch
    Troy Howe, Howe Industries LLC, Tempe, Arizona
  8. Ripcord Innovative Power System (RIPS)An investigation of a drag using ripcord unspooling power system for descent probes into planets with atmospheres, such as Saturn
    Noam Izenberg, Johns Hopkins University, Laurel, Maryland
  9. Power for Interstellar Fly-by: Power harvesting from ultra-miniature probes to enable interstellar missions
    Geoffrey Landis, NASA’s Glenn Research Center, Cleveland
  10. Lunar-polar Propellant Mining Outpost (LPMO): Affordable lunar pole ice mining for propellant production
    Joel Serce, TransAstra Corporation, Lake View Terrace, California
  11. Crosscutting High Apogee Refueling Orbital Navigator (CHARON)Novel system for small space debris mitigation
    John Slough, MSNW LLC, Redmond, Washington
  12. Thermal Mining of Ices on Cold Solar System Bodies: Proposes using a unique heat application on frozen volatiles and other materials for resource extraction
    George Sowers, Colorado School of Mines, Golden


Phase II studies allow researchers to further develop concepts, refine designs and start considering how the new technology would be implemented. This year’s Phase II selections address a range of cutting-edge concepts from flexible telescopes to new heat-withstanding materials. Awards under Phase II can be worth as much as $500,000 for two-year studies.


The 2019 Phase II selections are:

  1. The High Étendue Multiple Object Spectrographic Telescope (THE MOST): A new, flexible optical telescope design that can be a deployed in a cylindrical roll and installed upon delivery, on a 3D printed structure
    Tom Ditto, 3DeWitt LLC, Ancramdale, New York
  2. Rotary-Motion-Extended Array Synthesis (R-MXAS): A geostationary synthetic aperture imaging radiometer with a rotating tethered antenna
    John Kendra, Leidos, Inc., Reston, Virginia
  3. Self-Guided Beamed Propulsion for Breakthrough Interstellar Missions: An effort to advance self-guided beamed propulsion technology
    Chris Limbach, Texas A&M Engineering Experiment Station, College Station
  4. Astrophysics and Technical Lab Studies of a Solar Neutrino Spacecraft Detector: A small-scale neutrino detector study to advance detector technology for future probe missions
    Nickolas Solomey, Wichita State University, Kansas
  5. Diffractive LightSails: A study to design and advance passive and electro-optically active diffractive films for missions in low-Earth orbit, inner solar orbits and to distant stars
    Grover Swartzlander, Rochester Institute of Technology, New York
  6. Solar Surfing: A materials-science study to determine the best protective materials to enable heliophysics missions closer to the Sun
    Doug Willard, NASA’s Kennedy Space Center, Cape Canaveral, Florida


NASA selected Phase I and II proposals through a peer-review process that evaluates innovativeness and technical viability. All projects are still in the early stages of development, most requiring a decade or more of concept maturation and technology development.


For the first time this summer, the NIAC program will select one Phase III research study. The award will be up to $2 million for as long as two years. This final phase is designed to strategically transition a NIAC concept with the highest potential impact to NASA, other government agencies or commercial companies.


“NIAC is about going to the edge of science fiction, but not over,” said Jason Derleth, NIAC program executive. “We are supporting high impact technology concepts that could change how we explore within the solar system and beyond.”

Source: NASA JPL

If you like our content, please like us or share our articles

Share on facebook
Share on google
Share on twitter
Share on linkedin
Share on pinterest
Share on print
Share on email

Other recent posts:

%d bloggers like this: